전화 및 상담예약 : 1588-7655

Free board 자유게시판

예약/상담 > 자유게시판

GitHub - Deepseek-ai/DeepSeek-V3

페이지 정보

Lyle Gibney 작성일25-02-01 12:17

본문

Louvre_Museum_Wikimedia_Commons.jpg DeepSeek makes its generative synthetic intelligence algorithms, fashions, and coaching particulars open-source, permitting its code to be freely accessible for use, modification, viewing, and designing documents for constructing purposes. The models are available on GitHub and Hugging Face, along with the code and information used for training and evaluation. Strong effort in constructing pretraining knowledge from Github from scratch, with repository-degree samples. 1. Pretraining on 14.8T tokens of a multilingual corpus, principally English and Chinese. Paper summary: 1.3B to 33B LLMs on 1/2T code tokens (87 langs) w/ FiM and 16K seqlen. While specific languages supported usually are not listed, DeepSeek Coder is skilled on an unlimited dataset comprising 87% code from multiple sources, suggesting broad language assist. DeepSeek-R1, rivaling o1, is specifically designed to perform advanced reasoning duties, whereas generating step-by-step options to issues and establishing "logical chains of thought," the place it explains its reasoning course of step-by-step when fixing an issue.


kFB1L1Mv2Lge44_M5nggGtlXxw8ol88gdq7gf8ng Our evaluation outcomes demonstrate that DeepSeek LLM 67B surpasses LLaMA-2 70B on varied benchmarks, particularly within the domains of code, mathematics, and reasoning. DeepSeek released its R1-Lite-Preview mannequin in November 2024, claiming that the new mannequin might outperform OpenAI’s o1 family of reasoning fashions (and accomplish that at a fraction of the price). On 20 November 2024, DeepSeek-R1-Lite-Preview grew to become accessible via DeepSeek's API, as well as through a chat interface after logging in. Available now on Hugging Face, the model presents customers seamless entry by way of net and API, and it appears to be the most advanced large language mannequin (LLMs) at the moment out there within the open-source landscape, in response to observations and tests from third-occasion researchers. We current DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 671B complete parameters with 37B activated for each token. Abstract:We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 671B total parameters with 37B activated for each token.


It's trained on 2T tokens, composed of 87% code and 13% pure language in each English and Chinese, and is available in varied sizes as much as 33B parameters. The coaching regimen employed giant batch sizes and a multi-step studying fee schedule, ensuring strong and efficient learning capabilities. His agency is presently attempting to build "the most powerful AI training cluster on the earth," just outside Memphis, Tennessee. As well as, its coaching course of is remarkably stable. DeepSeek의 오픈소스 모델 DeepSeek-V2, 그리고 DeepSeek-Coder-V2 모델은 독자적인 ‘어텐션 메커니즘’과 ‘MoE 기법’을 개발, 활용해서 LLM의 성능을 효율적으로 향상시킨 결과물로 평가받고 있고, 특히 DeepSeek-Coder-V2는 현재 기준 가장mization), 코더를 파인튜닝하는 학습된 리워드 모델 등을 포함해서 ‘정교한 강화학습’ 기법을 활용합니다. 예를 들어 중간에 누락된 코드가 있는 경우, 이 모델은 주변의 코드를 기반으로 어떤 내용이 빈 곳에 들어가야 하는지 예측할 수 있습니다. 텍스트를 단어나 형태소 등의 ‘토큰’으로 분리해서 처리한 후 수많은 계층의 계산을 해서 이 토큰들 간의 관계를 이해하는 ‘트랜스포머 아키텍처’가 DeepSeek-V2의 핵심으로 근간에 자리하고 있습니다. 이 deepseek ai-Coder-V2 모델에는 어떤 비밀이 숨어있길래 GPT4-Turbo 뿐 아니라 Claude-3-Opus, Gemini-1.5-Pro, Llama-3-70B 등 널리 알려진 모델들까지도 앞서는 성능과 효율성을 달성할 수 있었을까요? 이렇게 하면, 모델이 데이터의 다양한 측면을 좀 더 효과적으로 처리할 수 있어서, 대규모 작업의 효율성, 확장성이 개선되죠. ‘코드 편집’ 능력에서는 DeepSeek-Coder-V2 0724 모델이 최신의 GPT-4o 모델과 동등하고 Claude-3.5-Sonnet의 77.4%에만 살짝 뒤지는 72.9%를 기록했습니다.



Should you have almost any questions concerning where and also the way to work with ديب سيك, you are able to e-mail us with the web-site.

댓글목록

등록된 댓글이 없습니다.


Warning: Unknown: write failed: Disk quota exceeded (122) in Unknown on line 0

Warning: Unknown: Failed to write session data (files). Please verify that the current setting of session.save_path is correct (/home2/hosting_users/cseeing/www/data/session) in Unknown on line 0